منابع مشابه
The Particle Filter and Extended Kalman Filter methods for the structural system identification considering various uncertainties
Structural system identification using recursive methods has been a research direction of increasing interest in recent decades. The two prominent methods, including the Extended Kalman Filter (EKF) and the Particle Filter (PF), also known as the Sequential Monte Carlo (SMC), are advantageous in this field. In this study, the system identification of a shake table test of a 4-story steel struct...
متن کاملThe Unscented Particle Filter
In this paper, we propose a new particle filter based on sequential importance sampling. The algorithm uses a bank of unscented filters to obtain the importance proposal distribution. This proposal has two very "nice" properties. Firstly, it makes efficient use of the latest available information and, secondly, it can have heavy tails. As a result, we find that the algorithm outperforms standar...
متن کاملSelf Adaptive Particle Filter
The particle filter has emerged as a useful tool for problems requiring dynamic state estimation. The efficiency and accuracy of the filter depend mostly on the number of particles used in the estimation and on the propagation function used to re-allocate these particles at each iteration. Both features are specified beforehand and are kept fixed in the regular implementation of the filter. In ...
متن کاملBox-particle Intensity Filter
This paper develops a novel approach for multi-target tracking, called box-particle intensity filter (box-iFilter). The approach is able to cope with unknown clutter, false alarms and estimates the unknown number of targets. Furthermore, it is capable of dealing with three sources of uncertainty: stochastic, set-theoretic and data association uncertainty. The box-iFilter reduces the number of p...
متن کاملVariable Resolution Particle Filter
Particle filters are used extensively for tracking the state of non-linear dynamic systems. This paper presents a new particle filter that maintains samples in the state space at dynamically varying resolution for computational efficiency. Resolution within statespace varies by region, depending on the belief that the true state lies within each region. Where belief is strong, resolution is fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2013
ISSN: 0018-9286,1558-2523
DOI: 10.1109/tac.2013.2258825